4.2. Вычислимость и хаос в современной физике

We use cookies. Read the Privacy and Cookie Policy

4.2. Вычислимость и хаос в современной физике

Точность и область применимости физических законов, по современным оценкам, чрезвычайно велики, однако в этих законах нет ни единого намека на процессы, которые невозможно моделировать вычислительными методами. Тем не менее, мы все же попробуем отыскать в дозволенных законами пределах место для той таинственной невычислительной активности, которая каким-то образом оказывается необходимой для функционирования наших с вами мозгов. Отложим на некоторое время дискуссию о возможной природе такой невычислимости. Есть все основания полагать, что природа эта чрезвычайно хитроумна и неуловима, и мне бы не хотелось застрять в самом начале, увязнув в рассмотрении всех непременно связанных с нею тонкостей. Мы вернемся к этому вопросу позже (§§7.9, 7.10). Достаточно сказать, что для хоть какого-то движения вперед нам потребуется нечто существенно отличное от тех картин, что рисуют существующие на данный момент физические теории, будь они классическими или квантовыми.

В классической физике мы можем в любой выбранный момент времени указать все необходимые для определения физической системы данные, дальнейшая же эволюция этой системы не только целиком и полностью определяется указанными данными, но и может быть по ним вычислена с помощью эффективных методов «тьюрингова» вычисления. По крайней мере, такое вычисление возможно в принципе, при соблюдении двух взаимосвязанных условий. Первое условие заключается в возможности адекватной оцифровки исходных данных — с тем, чтобы мы могли с достаточной степенью точности заменить непрерывные параметры теории соответствующими дискретными параметрами. (В сущности, такая замена обычно и производится при компьютерном моделировании классических систем.) Второе условие связано с тем фактом, что многие физические системы являются хаотическими — в том смысле, что вычисление дальнейшего поведения такой системы с хоть сколько-нибудь приемлемой точностью требует совершенно непомерной точности исходных данных. Выше (см., в частности, §1.7, а также §§3.10, 3.22) мы уже рассмотрели такие системы довольно подробно и пришли к выводу, что хаотическое поведение в дискретно действующей системе не приводит к той «невычислимости», которая нас в данном случае интересует. Хаотическая (дискретная) система, пусть и сложная для вычисления, остается все же системой вычислимой, о чем свидетельствует тот факт, что подобные системы, как правило, исследуются и моделируются посредством электронных компьютеров! Первое условие связано со вторым, поскольку в хаотической системе ответ на вопрос о том, какую степень точности дискретной аппроксимации к непрерывным параметрам теории следует полагать «адекватной», зависит от того, намерены мы вычислять действительное поведение системы или достаточно будет и типичного. Если только последнее (а как я показал в первой части, большего, коль скоро речь идет об искусственном интеллекте, по всей видимости, и не требуется), то нет нужды беспокоиться о том, что наши дискретные аппроксимации окажутся несовершенными, а малые погрешности в исходных данных приведут к огромным отклонениям в последующем поведении системы. Если нас и в самом деле занимает лишь типичное поведение, то вышеприведенные условия не оставляют места для сколько-нибудь серьезной возможности возникновения в любой чисто классической физической системе невычислимости требуемого (в соответствии с рассуждениями, представленными в первой части книги) рода.

Не следует, впрочем, сбрасывать со счетов возможности наличия в действительном хаотическом поведении какой-нибудь непрерывной математической системы (моделирующей некое реальное физическое поведение) процессов, воспроизвести которые с помощью дискретной аппроксимации в принципе невозможно. Я ни о чем подобном никогда не слышал, однако даже если такая система где-нибудь и существует, создателям искусственного интеллекта (в том виде, как мы понимаем его сегодня) от нее никакого проку не будет, поскольку все современные разработки в этой области опираются как раз на дискретное вычисление (т.е. на вычисление скорее цифровое, нежели аналоговое; см. §1.8).

В квантовой физике, наряду с детерминированным (и вычислимым) поведением, описываемым уравнениями квантовой теории (в основном, уравнением Шрёдингера), присутствует и некая добавочная степень свободы, целиком и полностью случайная по своей природе. С формальной точки зрения, уравнения квантовой теории не являются хаотическими, однако отсутствие хаоса возмещается наличием вышеупомянутых случайных ингредиентов, дополняющих детерминистскую эволюцию. Как мы могли убедиться (в частности, в §3.18), такие чисто случайные ингредиенты также не в состоянии обусловить необходимую неалгоритмическую активность. Таким образом, ни в классической, ни в квантовой физике (в их теперешнем понимании) для невычислительного поведения требуемого типа просто нет места, поэтому если нам нужна именно невычислительная активность, то искать ее следует где угодно, но только не здесь.