7.8. Невычислимость в квантовой гравитации (1)
7.8. Невычислимость в квантовой гравитации (1)
Ключевым требованием предшествующих рассуждений было то, что какой бы новый физический процесс ни пришел на смену вероятностной R-процедуре, применяемой в стандартной квантовой теории, его неотъемлемым свойством должна быть того или иного рода невычислимость. В §6.10 я показал, что этот новый физический процесс, OR, должен сочетать в себе принципы квантовой теории с принципами общей теории относительности Эйнштейна — т.е. представлять собой квантово-гравитационный феномен. Есть ли какие-нибудь свидетельства в пользу того, что невычислимость может оказаться существенным свойством той теории (какой бы она ни была), которая в конечном счете корректно объединит (надлежащим образом модифицировав) квантовую теорию и общую теорию относительности?
Исследуя квантовую гравитацию, Роберт Герох и Джеймс Хартл столкнулись однажды с численно неразрешимой проблемой — проблемой топологической эквивалентности четырехмерных многообразий [144]. В основном их занимал вопрос о том, как определить, что два данных четырехмерных пространства «одинаковы» с топологической точки зрения (т.е. одно из этих пространств посредством непрерывной деформации можно довести до полного совпадения с другим пространством, причем деформация эта не допускает каких бы то ни было разрывов или слияний пространств). На рис. 7.14 топологическая эквивалентность проиллюстрирована на примере двухмерного случая, где мы видим, что поверхность чашки топологически одинакова с поверхностью кольца, но отлична от поверхности шара. В двухмерном случае проблема топологической эквивалентности разрешима вычислительным путем, в случая же четырех измерений, как показал в 1958 году А.А.Марков [256], алгоритма для решения такой задачи не существует. Более того, доказательство Маркова эффективно демонстрирует, что если бы такой алгоритм существовал, то его можно было бы преобразовать в алгоритм, позволяющий решить проблему остановки, т.е. найти способ определять, завершится в той или иной ситуации работа машины Тьюринга или нет. Поскольку, как мы выяснили в §2.5, такого алгоритма не существует, значит, не может быть и алгоритма для решения проблемы эквивалентности четырехмерных многообразий.
Рис. 7.14. Двухмерные замкнутые поверхности, которые можно классифицировать численно (грубо говоря, путем подсчета количества «ручек»). Четырехмерные же замкнутые «поверхности» численно классифицировать невозможно.
Существует множество других классов математических задач, которые неразрешимы численно. Две из них — десятую проблему Гильберта и задачу о замощении — мы обсуждали в §1.9. Еще один пример — задачу со словами (для полугрупп) — можно найти в НРК, с. 130-132.
Следует пояснить, что термин «численно неразрешимый» не означает, что в данном классе имеются отдельные задачи, которые невозможно решить в принципе. Он означает лишь то, что не существует систематического (алгоритмического) способа решить все задачи этого класса. В том или ином отдельном случае порой оказывается возможным получить решение благодаря человеческой находчивости и проницательности, подкрепленной, может быть, некоторыми вычислениями. Может, напротив, случиться и так, что решение каких-то задач из класса окажется человеку не по силам (даже если он возьмет в помощники машину). Похоже, никто об этом феномене ничего определенного не знает, поэтому каждый волен составлять обо всем этом свое собственное мнение. Впрочем, как вполне недвусмысленно показывает «гёделевско-тьюринговское» рассуждение из §2.5 (вкупе с аргументацией главы 3), задачи таких классов, доступные человеческому пониманию и проницательности (подкрепленным вычислениями, если хотите), все равно образуют класс, который численно неразрешим. (Для проблемы остановки, например, в §2.5 показано, что класс вычислений, незавершаемость которых в состоянии установить человек, невозможно охватить каким-либо познаваемо обоснованным алгоритмом A — а от этого уже отталкиваются аргументы главы 3.)
Что касается Героха, Хартла и квантовой гравитации, то проблема эквивалентности четырехмерных многообразий проникла в их анализ постольку, поскольку, согласно стандартным правилам квантовой теории, квантово-гравитационное состояние предполагает суперпозиции (с комплексными весовыми коэффициентами) всех возможных геометрий — пространственно-временных, в данном случае, геометрий, т.е. четырехмерных объектов. Для того чтобы понять, как определять такие суперпозиции каким-либо уникальным образом (во избежание путаницы при подсчете), необходимо знать, какие пространства-времена считать различными, а какие — одинаковыми. Проблема топологической эквивалентности представляет собой, таким образом, лишь часть более обширной задачи.
Читатель спросит: если вдруг подход Героха—Хартла к квантовой гравитации окажется физически корректным, будет ли это означать, что эволюция физических систем включает в себя нечто существенно невычислимое? Вряд ли на этот вопрос можно дать ясный и однозначный ответ. Мне не ясно даже, так ли непременно из численной неразрешимости проблемы топологической эквивалентности следует неразрешимость более полной проблемы геометрической эквивалентности. Мне не ясно также, какое отношение этот подход может иметь (если вообще может) к искомой объективной редукции, которая предполагает изменения в самой структуре собственно квантовой теории, связанные с необходимостью учета гравитационных эффектов. Тем не менее, работа Героха—Хартла и в самом деле вполне определенно указывает на то, что невычислимость может-таки сыграть свою роль в окончательной, физически корректной теории квантовой гравитации.