Асимптоты

We use cookies. Read the Privacy and Cookie Policy

Асимптоты. Геометрия начинает с открытия, что прямое и кривое представляют абсолютные противоположности, что прямого нельзя совершенно выразить в кривом, кривого в прямом, что они несоизмеримы между собой. И однако уже круг можно вычислить лишь в том случае, если выразить его периферию в виде прямых линий. В случае же кривых с асимптотами прямое совершенно растворяется в кривом и кривое в прямом; точно так же исчезает и представление о параллелизме: линии не параллельны, непрерывно приближаются друг к другу и все-таки никогда не пересекаются. Ветвь кривой становится все прямее, не делаясь никогда окончательно прямой. Точно так же в аналитической геометрии прямая линия рассматривается как кривая первого порядка с бесконечно малой кривизной. Сколь бы большим ни сделалось -x логарифмической кривой, y никогда не станет = 0. (Энгельс, Диалектика природы, стр. 31, 1932 г.)