5. То же. Три пропорции
5. То же. Три пропорции
Наконец, среди теоретико-числовых операций в области музыкальной гармонии у пифагорейцев имела место еще и теория трех пропорций. Ее совершенно точно формулировал Архит (47 B 2).
а) Первая пропорция, арифметическая, есть такое соотношение чисел, когда разница Между двумя числами одной пары равняется разнице чисел другой пары. Если октаву представить себе в виде 7 тоновых промежутков, а квинту – в виде четырех таких же промежутков, то получается такая ясная пропорция: 7 – 4 = 4 – 1. Это значит, что полная октава на столько же тонов превосходит квинту, на сколько сама квинта превосходит один тон.
б) Что касается геометрической пропорции, то и она характеризует собою в максимально очевидной форме тоже определенного рода числовые отношения. Именно, 2:1 = 4:2. Установлена пропорция 1 : 4/3 = 3/2 : 2. Другими словами, помещение двух кварт по бокам одного центрального тона числовым образом понималось как установление геометрической пропорции: во сколько раз кварта больше исходного тона, во столько же раз октава больше квинты. С подобного же рода пропорцией мы встречались при обсуждении закона золотого деления, почему и нужно понимать золотое деление как разновидность геометрической пропорции. Конечно, если пользоваться первичной тетрактидой, то само собой была ясной и пропорция 2:1 = 4:2. Но в таком виде геометрическая пропорция была малоинтересна, потому что уже заранее было известно, что если консонанс является отношением октавы к основному тону, то консонансом было также и отношение двойной октавы к ординарной или ординарной к основному тону.
в) Наконец, Архит установил еще и так называемую гармоническую пропорцию. Она заключалась в том, что на какую часть первой величины вторая превосходила первую, на такую же часть третьей величины эта третья превосходила вторую. Или (a-b):(b-c) = a:c. Нетрудно сообразить, что здесь имелась в виду именно кварта, которая и получалась в результате установления такого рода пропорции – (2 – 4/3):(4/3 – 1) = 2:1. Итак, положение кварты в октаве понималось при помощи применения гармонической пропорции.
г) Можно поставить вопрос также и специально об эстетической сущности гармонической пропорции. Древние слишком увлекались теоретико-числовыми операциями и не находили нужным анализировать также еще и эстетическую сущность этих операций. Как нам представляется, речь тут шла, конечно, в первую очередь об отношении целого и частей, а также об отношении частей между собою внутри единого целого. И утверждалось, что гармоническая пропорция говорит о таком положении целого и частей, при котором мыслится одинаковость отношения двух каких-нибудь частей к своему положению относительно третьей части. Части целого различны между собою, но это различие не настолько велико, чтобы делать все эти части абсолютно дискретными одна в отношении другой. Такое отношение одной части к другой было не только определенной величиной, но оно обязательно было связано также и со всякой третьей частью. Гармоническая пропорция только и говорила у древних о таком различии частей и целого, когда эти части везде сохраняют свое определенное структурное положение в системе целого. Но при таком нашем понимании гармонической пропорции последняя получает, конечно, самую высокую эстетическую значимость.