8. Геометрическая интерпретация
8. Геометрическая интерпретация
Пифагорейская гармония, теоретико-числовая, звуковая и физическая, развивалась еще и дальше, переходя в гармонию геометрическую. И здесь тоже из геометрии бралось то, что казалось максимально очевидным и правильным. Во-первых, понимание единицы как точки было вполне естественным. Но тогда, если оставаться на пространственной позиции, двойка легко отождествлялась с линией, тройка – с плоскостью и четверка – с трехмерным телом. Но гораздо сложнее и занятнее была другая геометрическая интерпретация.
Именно, поскольку основная интуиция базировалась на телесной вещи, а тело и вещь трехмерны, то, конечно, основным пифагорейским интересом была здесь только стереометрия. Но если гоняться за правильностью, то в области стереометрии – а тут уже и нам нечего возразить – фиксировалось не что иное, как правильные многогранники. Но как сопоставить между собой эти правильные многогранники? Брали количества вершин и сравнивали эти количества между собой. Оказывалось, что в пирамиде – 4 вершины, в октаэдре – 6 вершин, в кубе – 8 и в икосаэдре – 12. Однако, согласно принципу гармонического генологизма, правильность геометрическая во что бы то ни стало должна была совпадать с правильностью физической. Отсюда получалось, что самый простой и легкий многогранник – это пирамида, а самое простое и легкое вещество – это огонь. Следовательно, делали вывод, что огонь есть пирамида и пирамида есть огонь. А если максимально плотным веществом, противоположным легкости огня, была земля, то отсюда делали вывод, что земля есть куб; к тому же земляной куб имел вдвое больше вершин, чем огненная пирамида. Но тогда уже само собой получалось, что водяной икосаэдр звучал на кварту выше земляного куба, а воздушный октаэдр звучал на квинту выше земляного куба и на кварту ниже огненной пирамиды и между водяным икосаэдром и воздушным октаэдром звучал один цельный тон.
Ко всему этому необходимо прибавить еще и то, что в такой концепции не оставалось места для пятого правильного многогранника, то есть для додекаэдра и для шара. Однако о шаре уже никто не спорил, что это максимально совершенное тело и что весь космос обязательно есть шар. А что касается додекаэдра, то этот правильный двенадцатигранник из всех правильных многогранников максимально приближался к шару. Физически и додекаэдр и шар, очевидно, были еще более тонким веществом, чем даже огонь. И для такого максимально тонкого вещества, то есть для предельно тонкого вещества, в античности тоже было свое название, это – эфир.
Вся эта скрупулезнейшая физическая и геометрическая интерпретация музыкальной гармонии трактовалась в античности весьма разнообразно и даже противоречиво. Но входить в обзор всех этих деталей для нас не имеет смысла. Для нас важно основное, а оно у нас сейчас сформулировано[274].