Фазовые переходы: от хаоса к порядку и обратно

We use cookies. Read the Privacy and Cookie Policy

В неупорядоченном состоянии элементарные магниты ферромагнетика могут быть распределены по всем возможным направлениям. Такое распределение можно назвать симметричным: ни одно из направлений не имеет никаких преимуществ перед всеми прочими. При намагничивании же ферромагнетика все элементарные магниты вдруг оказываются обращены в одном и том же направлении; и хотя до фазового перехода все направления были равноправными, в этот момент происходит выбор одного определенного направления: существовавшая изначально симметрия направлений оказывается «нарушена» (рис. 3.8).

Ферромагнетики идеально подходят для изучения процессов, происходящих на микроскопическом уровне при фазовых переходах. В намагниченном, упорядоченном состоянии все элементарные магниты сориентированы в одном направлении, в то время как в разупорядоченной фазе они оказываются хаотически распределены по всем возможным направлениям. Причина возникновения этих двух абсолютно различных фаз — борьба двух разнородных физических сил. Одна из них воздействует на элементарные магниты, выстраивая их параллельно, в одном направлении. Другая сила основывается на тепловом, т. е. неупорядоченном, движении и стремится разупорядочить структуру магнита, хаотически распределив направления полюсов элементарных магнитов. Здесь, пожалуй, можно провести аналогию с весами: на одну чашу весов нагрузим тепловое движение, а на другую — силы, упорядочивающие расположение элементарных магнитов. Если большим «весом» обладает тепловое движение, то магнит оказывается в неупорядоченной фазе и на макроскопическом уровне теряет намагниченность, поскольку прекращается совокупное воздействие отдельных элементарных магнитов, направленное наружу (рис. 3.8). Охладив магнитный брусок, мы существенно «облегчим» эту чашу весов, и преимущество получат силы, действующие внутри магнита. Весы тут же склонятся в другую сторону, и элементарные магниты снова расположатся стройными рядами (рис. 3.9).

Рис. 3.8. Весы символизируют борьбу между тепловым движением и силами, действующими внутри магнита. Если «перевешивает» тепловое движение, то элементарные магниты оказываются сориентированы в разных направлениях

Рис. 3.9. Ситуация, противоположная предыдущей: тепловое движение оказалось слабее, и внутренние силы упорядочили элементарные магниты

Рис. 3.10. Здесь сопоставлены оба случая, представленные на рис. 3.8 и 3.9. Слева: элементарные магниты сориентированы различным образом, вследствие чего общая намагниченность равна нулю. Справа: все элементарные магниты сориентированы одинаково, что усиливает их магнитное действие, и ферромагнетик становится магнитом

Некоторые из тех понятий, с которыми мы познакомились, рассматривая фазовые переходы, будут очень важны для нас и в дальнейшем, когда мы будем обсуждать в терминах синергетики течение различных процессов, используя примеры не только из физики, но также из социологии и психологии.

К таким понятиям можно отнести важное свойство многих фазовых переходов, которое мы можем наблюдать невооруженным глазом при кипении жидкости. Скажем, вода при температуре ниже критической прозрачна, однако при приближении к точке кипения она мутнеет. Объясняется это тем, что у закипающей воды существенно изменяется способность к светорассеянию. В данном случае эту способность ослабляет то, что движение молекул воды вблизи критической точки особенно интенсивно, а это приводит к тому, что физики называют «критическими флуктуациями». Иллюстрацией этого понятия может стать картинка, изображающая большую группу людей в момент окончания какого-нибудь собрания. Люди начинают расходиться, возникает оживленное движение, кое-где приводящее к пробкам, и так продолжается до тех пор, пока каждый не отправится своей дорогой (рис. 3.11). В самом начале главы мы уже упоминали о том, что фазовые переходы и сегодня остаются объектом интенсивных физических исследований. При этом выясняется, что фазовые переходы, несмотря на различие в характере субстанций и феноменов, все же подчиняются одинаковым закономерностям и сопровождаются одними и теми же основными проявлениями — такими, например, как критические флуктуации или нарушение симметрии. В последние годы физикам удалось обосновать единые закономерности фазовых переходов. Допустим, неожиданное возникновение при таких переходах упорядоченных структур можно непосредственно перенести на процессы, происходящие в живых организмах, — ведь и здесь мы имеем дело, в определенном смысле, с упорядоченными структурами. Есть, однако, одно «но». В наших примерах были рассмотрены вещества, приходившие в упорядоченное состояние только при понижении температуры. Физиологические же процессы при понижении температуры, напротив, ослабевают и даже полностью прекращаются, а результатом этого для многих живых существ становится смерть.

Рис. 3.11. Собрание закончилось, и его участники, толпясь, устремляются к выходу, демонстрируя при этом значительные колебания плотности своего распределения

Живые существа для поддержания жизни нуждаются в постоянном притоке энергии и веществ, которые они усваивают и перерабатывают. Высокоразвитые теплокровные существа не только не поддерживают теплового равновесия с окружающей их средой — они весьма далеки от него. Скажем, температура нашего тела около 37° С, а нормальной комнатной температурой мы считаем температуру всего лишь порядка 20°С. Очевидно, что физиологические процессы должны быть основаны в этом случае на каких-то совершенно иных принципах, не имеющих ничего общего ни с кристаллической решеткой сверхпроводников, ни с ферромагнетиками. Может показаться, что физике не дано внести свой вклад в объяснение природы жизни. Однако не будем судить опрометчиво — лучше продолжим исследование нашей темы в следующей главе.